Improving Volunteered Geographic Data Quality Using Semantic Similarity Measurements

نویسندگان

  • A. Vandecasteele
  • R. Devillers
چکیده

Studies have analysed the quality of volunteered geographic information (VGI) datasets, assessing the positional accuracy of features and the completeness of specific attributes. While it has been shown that VGI can, in some context, reach a high positional accuracy, these works have also highlighted a large spatial heterogeneity in positional accuracy, completeness but also with regards to the semantics of the objects. Such high semantic heterogeneity of VGI datasets becomes a significant obstacle to a number of possible uses that could be made of the data. This paper proposes an approach for both improving the semantic quality and reducing the semantic heterogeneity of VGI dat asets. The improvement of the semantic quality is achieved by automatically suggesting attributes to contributors during the editing process. The reduction of semantic heterogeneity is achieved by automatically notifying contributors when two attributes are too similar or too dissimilar. The approach was implemented into a plugin for OpenStreetMap and different examples illustrate how this plugin can be used to improve the quality of VGI data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyzing the Spatial-Semantic Interaction of Points of Interest in Volunteered Geographic Information

With the increasing success and commercial integration of Volunteered Geographic Information (VGI), the focus shifts away from coverage to data quality and homogeneity. Within the last years, several studies have been published analyzing the positional accuracy of features, completeness of specific attributes, or the topological consistency of line and polygon features. However, most of these s...

متن کامل

Computing the semantic similarity of geographic terms using volunteered lexical definitions

Volunteered geographic information (VGI) is generated by heterogenous ‘information communities’ that co-operate to produce reusable units of geographic knowledge. A consensual lexicon is a key factor to enable this open production model. Lexical definitions help demarcate the boundaries of terms, forming a thin semantic ground on which knowledge can travel. In VGI, lexical definitions often app...

متن کامل

Validation of Volunteered Geographic Information Landuse Change Using Satellite Imagery

Land use change monitoring is one of the main concerns of managers and urban planners due to human activities and unbalanced physical development in urban areas. In this paper, a combination of remote sensing data and volunteered geographic information was used to assess the quality of volunteered geographic information on land use and land cover changes monitoring. For this purpose, the ORBVIE...

متن کامل

Geographic Feature Type Topic Model (GFTTM): grounding topics in the landscape

7 Probabilistic topic models are a class of unsupervised machine learning models used for understanding the latent topics in a corpus of documents. A new method for combining geographic feature data with text from geo-referenced documents to create topic models that are grounded in the physical environment is proposed. The Geographic Feature Type Topic Model (GFTTM) models each document in a co...

متن کامل

A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing ‘geographic intelligence’ in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013